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Abstlract

Quantitative diagnosis involves numerically estimnat-
ing the values of unobservable parameters that best
explain the observed parameter values.  We con-
sider quantitative diagnosis for continuous, lumped-
parameter, steady -state physical systems because Such
models arc easy to construct and the diagnosis prob-
lem is considerably simpler thau that for correspond-
ing dynamic models. 10 further tackle the difficultics
of numerically inverting a simulation model to com-
pute a diagnosis, wc propose to decompose a physical
system model in terms of feedback loops. This de-
composition reduces the dimension of the problemn and
consequently decrcases the diagnosis search space. We
illustrate this approach on a mmodel of a thermal control
system studied in earlier rescarch.

Introduction

In a model-based reasoning setting, diagnosis is the
problem of explaining differences between the behav-
jor observed of a physical system and the behavior pre-
dicted from a model of that system. Regardless of the
nature of the physical systemmodel (logical, quali-
tative, quantitative, probabilistic, etc. ..), diagnosis is
an example of an ill-posed inverse problem: Taken in
isolation, behavior observations typically have a large
number of possible explanations. Narrowing the set of
likely explanations,also called hypotheses, to a man-
ageable size is onc of the fundamental problems of di-
agnosis [Davis and Hamscher, 1992].

In previous work on analog diagnosis, researchers
have used various approaches to focus hypothesis gen-
eration: de Kleer and Brown [de Kleer and Brown,
1992] rely on a component-based ontology to map
hypotheses onto individual components while others
such as[Dvorak and Kuipers, 1992, deCoste, 1992,
Oycleyeet al., 1992] rely on the dynamic behavior of
the system for diagnostic clues. Eventually, some hy-
potheses have to be tested. For steady-state models,
this mecans that a model prediction will have to be com-
puted and matched against sensor measurements from
the physical system. Since diagnosis involves inferring
the state of noll-measurable properties, it incans that
a fault hypothesis corresponds to a set of exogenous
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model parameter values. Testing a fault hypothesis
then means verifying that the exogenous values make
model predictions consistent with the anomalous sen-
SOr measurements.

A's de Kleer and Brown observed in [de Kleer and
Brown, 1992], this form of hypothesis testing is com-
putation aly expaunsive because the actual exogenous
parameter values that best explain the anomalous sen-
sor measurements arc, aflter all, unknown. Further-
more, tl e number of parameters values observed is
typically muchsmallerthan the total number of pa-
1ameters in the systein model. The number of un-
known parameter values thus far exceeds the num-
ber of known values due to observations. Although
there has been several advances in diagnosing con-
tinuous physical systems with feedback at a qualita-
tive level [Rose and Kyamer, 1991] the general prob-
lem is quite hard as noted in [Biswas and Yu, 1993,
Srinivas, 1994].

Here, we focus on the problem of computing exoge-
nous parameter values from observed measurements.
That is, wc assume that adequate diagnostic hypothe-
sis have dready been selected and that some agency
or prog) am focused the attention of the diagnoser
to deter mine the diagnostic values of specific exoge-
nous parameters. To illustrate our discussion, wc
will use a simplified, steady-state, continuous, lumped-
parameter model of an external-active thermal control
system (EATCS) shown in Fig. 1, a two-phase ammo-
nia theral controller designed at McDonnell Douglas
once considered for Space Station Freedom. This sys-
tcm is designed to transfer heat from the crew cabin
and electronic equipment and radiate it in space. The
vehicle for this transfer is two-phase ammonia at or
below St turation temperature. Under normal circum-
stances, the thermodynamic cycle works as follows: at
the evaprorators, the heat load vaporizes liquid ammo-
nia ther eby producing a two-phase mixture. The ro-
tary fluid management device separate% vapor and lig-
uid by centrifugation. The vapor is circulated to the
condenser side Wher ¢ it is liquified. To ensure proper
oper ation over a widcrange of heat load conditions,
the back-pressure regulating valve ensures that there
is enough liquid atmnonia flow to handle the heat load
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Figure 1. The evaporator loop of the BEATCS.

without reaching a superheated vapor state

We will first describe diagnosis as an inverse problem
and then describe a technique for reducing the dimen-
sionality of the diagnostic problem. Finally,we present
an experiment to quantitatively evaluate this approach
on simulated data.

Diagnosis as an inverse problem

Let F(u,z)= O stand for the equation model of the
physical system where uis a set of exogenous param-
eters and xz is the internal state of the system. Let
y=G(x) be the observation function where y is the
set of internal state parameters made observable by
sensors attached to the physical systcm. Steady-state
simulation is defined by the following problem:

Given u find y such that:

{ FU, z)=o
v = Gl)

Steady-state diagnosis is defined by the following in-
verse problem:

Detailed analyses of this modelappear in [Biswas el
al., 1993, Rouquette, 1995]

Giveny find v such that:
y = Gla) &)
where z isimplicitly defined by:

F(u,z)=o0 (2

By combining Eq. 1 and Eq. 2 into one system of
equations, this problem becomes equivaent to:

Given y find usuch that:

S(u,y)=o. ®

This P*oblem is typically difficult because the nuin-
ber of exogenous parametersinu IS not necessarily re-
lated to the number of observable parameters iny. In
deed, the degree of sensor instrumentation of the phys-
ical system is often a separate consideration based on
various factors such as cogt, reiability, diagnosability,
and available telecommunications bandwidth. These
considerations typically lead to situations where the
number of measured paramcters, (i.e., the size of y) is
less than the number of exogenous parameters affecting
the physical systein (i.e., the size of u).

Numa ically, such situations are the most trouble
some because the systemn S of equations is under-
constrained and therefore may have an entire manifold



of solutions! Since a direct eguation solving approach
is not feasible, wc need to compute a solution by min-
imizing the residual error of Eq. 3, i.e.,:

Given y and an errorlevel € >0, find v such that:

1S, »)ll <e (4)

Recall that S implies that the entire set of state pa-
rameters, , must be computed inorder to solve the
problem. Since there arc far more internal parame-
tersin 2 and v than wc can typicaly observe in vy, the
least-squares minimization problem becomnes numneri-
cally ill-p osed, and there exists a manifold of possible
solutions.

These two problems - solution manifolds and lack
of guidance - imply that wc need to exploit additional
domain knowledge to better constrain the minimiza-
tion problem and obtain meaningful solutions. This
is a classic situation of ill-posed minimization prob-
lems which occurs quite frequently insolving integral
equations of the first kind. For such problems, para-
doxically it islcss important to obtain the most accu-
rate solution than deriving meaningful constraints that
characterize an adequate solution. The difficulty of ex-
ercising this tradeoff makes least-squares minimization
problems numerically delicate and difficult to solve.

For the diagnosis of physical systems, additional so-
lution constraints stcm from two sources: 1) the tem-
poral behavior of the physical system and 2) the feed-
back structure of the physical system to reduce the ef-
fective number of internal parameters to be estimated
(i.e, the size of x).

Temporal phases of steacly-state
behavior

Instead of solving the diagnosis problem for a given
sample of observations y(t) measured at time i?, wc can
exploit a-priort knowledge of the fact that the behavior
of the physical systcm over time is approximatively
continuous and differentiable between discrete events
(e.g. flipping a switch, opening or closing a valve).
This leads us to consider not just onc telemetry point
but a temporal sequence of N such points iu a sliding
window from an instant in the past: N to the current
instant: ¢ =1;:

y(An), .- y(t2), y(t = 1)

Suppose now that the physical system is at steady
state in the interval: [tn,t1]. This means that all
measurcments taken in that interval must be equal:
y(tn) = ¥(tn-1) .- = y(t1) by definition of steady -
statc behavior. This is equivalent to N — 1 constraints:

ly(ts- 1y y(tll=0 for all 7. Q)
Suppose now that the physical system is not at
steady state but that there arc small transient or pe-
riodic changes small enough that, a some level of ap-
proximation, the system could be considered at or near

steady state. Then, it follows that in some sense, con-
secutive states arc near each other as well. We can
express this with N — 1 constraints adapted from Eq. 5:

ly(tior) ()l <. ©)
Small e1neans a physical systcm closc to steady-state.
onverscly, large emeans a physical system away from
stead y-state. Small e may be used to detect quiescence,
while lair ge e may be used to detect reachable steady-
statcs ncarby the current transient state,

Wc would like then to exploit multiple telemetry
points in the following manner:

Given y(tn),...,y(t1) and an error bound € >0,
find u(tn),...,u(t1) such that:

IS(utn), vy <c,
IS((n-1),v(tn-1))l <c,

: ™
IS (u(t2), y(t )l <(,
I1S(ut), y(E I <t

As stated, we lack constraints to express the fact
that consecutive telemetry observations ¥{tn) . y(t1)
arc not independent but iustead correspond to an ac-
tua slice of behavior history. This type of additional
knowledge fits within the application scope of regu-
larizalion in parameter space, a technique of numer-
ical analysis designed for nonlinear, ill-posed inverse
problems [Chavent and Kunish, 1993]. Here, we usc
Tikhonov regularization [Chavent and Kunisch, 1994
as follows. Instead of solving the diagnosis problem 7
as a nonlinear least-squares minimization, namely:

Given vy, find:
S(u(tn),y(in))

argminy .y, u(t) @

S(u(tr),y(ts))

wc augnent problein 8 with additional information
from n-t h order difference relations for capturing the

continuity of the physical system behavior. In the case
of seccond-order difference relations, the resulting prob-
lem is shown below:

Given y, find: argmingg .y, . u(e)

S(u(tn), y(tn))

S(u(tl)) y(tl)) )
€ [u(tN) - ?'“(tN~l) -+ u(tN~2)] .

e [u(ts) - 2u(ts) + u(ty))

If €= O, then problem g is equivalent to noulincar
least-squares minimization problem 8. The value of ¢
controls the importance attributed to the second-order
differences terms, namely:




[ulte-1) — 2u(ty) + u(tesr)] -

Allarge regularization cocflicient ¢ means that the
regularization term: u{ty- 1) — 2u(ty) + u(teqr ) must
be small which inturn forces the solution values to be
closc to each other. A small regularization coeflicient ¢
means that the regularization term can be correspond-
ingly larger which in turn alows more freedom to the
solution values. In practice, it can be difficult to select
an adequate regularization coeflicient. Thus, although
powerful, this technique requires some fine tuning to
work properly. Note that during the minimization
process, scveral estimates of the exogenous parameters
u(in), . ... %(t1) will be made, and the corresponding
obscrvable state parameters y(tn), . . . . y(t;) will there-
fore have to be computed by simulation. Since sim-
ulation consists in solving the state equations of the
model, the usc of regularization in parameter space as
a means of performing diagnosis relics heavily on efli-
cient equation solving techniques.

Dimension reduction

In the previous section, wc characterized the diagno-
sis problem as that of estimating the values of exoge-
nous parameters, u,given observations y by solving
S(u,y)= O for a given y. As wc saw in equations 1
and 2, this nccessitates to find the values of the un-
observable internal parameters z such that y = G(z)
where F(u,2)= O. The more unobservable parameters
there arc, the more difficult will it be to numerically
compute a diagnosis, u and the more uncertain will
the results be. Like all inverse problems where it is
not directly possible to compute u for a given y, the
solution is first estimated, #, and a resultant, %, iS com-
puted. Other estimates of arc successively generated
until the residual error, ||y — ]|, is below a convergence
threshold.

For a given estimate, #, it is therefore important to
minimize the number of unobservable state parame-
ters, z that must be also estimated in order to com-
pute a prediction 7. We address this issue by imposing
a structure to the physical system model such that the
size of x isas smal as possible. To achieve this, wc seek
to identify the structure of the physical system model
to obtain the set of independent state parameters that
arc equivalent to z{Jw. Here, wc approximate this
ideal situation by analyzing the feedback structure of
the model so that | J u becomes as small as possible.
This process occurs in three phases.

First, wc start by constructing an algebraic ordering
of the model parameters and equations to capture how
parameters can be under, properly or over-constrained
from equations and how equations can be properly con-
straining onc or Over-callstrailling multiple parameters.
Figure 2 shows two examples with equations (top),
algebraic orderings (middle) and corresponding high-
level equation-solvillg code {(bottom).This notion of
algebraic ordering bears close resenblance to that of

causal o1 dering; the latter seeks to identify which pa-
rameters causaly influence the values of other parame-
ters while the former seeks to identify how parameters
arc comjuuted from other parameters and equations.
The disti nction between the two stems from the differ-
ences bet ween the causal aspects of a model equations
and parameters and the comnputational aspects of nu-
merically computing parameter values.

Second, wc usc g1aph-theoretic techniques to de-
compose the algebraic ordering in terms of strongly-
connected components and each connected component
in terms of feedback loops. Although there arc theo-
retical himitations on solving the feedback vertex set
problem for arbitrary directed graphs, the structure
of algebiaic orderings aiestrongly biased to reflect ei-
ther physical feedback loops or algebraic circularities
of dependencies. We h ave exploited these biases to
construct eflicient decomposition algorithms described
in [Rouquette, 1995]. For the EATCS system, the al-
gebraic ordering constiucted is shown in Fig. 3 and
the structural feedback decomposition made of this or-
dering is shown in Fig. 4. An example of algebraic
equation, eq20, is shown below:

(defeqn :cond #[P1<PsatPitot*Lambdal

+ Ppitot# (1- Lambdal)]#

vif-true #[ £1=(Pi/4) *(Phil/12.0)-2
*sqrt (2+rl.iqPitot* (Ppitot-PsatPitot)
*4633.05/Lambdal)]#

tif-falere #[f£f2=:(Pi/4)#+(Phi2/12.0)"2

*sqrt(2*rLiqPitot* (Ppitot-P2)

*4633.05/Lambda2)]#)

The third and fina step consists in generating a
simulation program from a decomposed agebraic or-
dering. The additional structure brought by feedback
analysis allows us to clininate dl but the state pa-
rameters of each feedback loop thereby leading to a
dragtic dimensionreduct ionin the simulation program
as shown in Table 1 for the KAT'CS model. This three-
stage approach to constructing simulation programs
is implemented in a computer program, DAGGER de-
scribed in[Rouquette, 1995).

Experiment Setup

Sensor technology createsinherent limitations on what
system parameters can be measured. For example,
while it is possible to 1ncasu1 e pressures, temperatures,
flow rates or pump speeds, it is not yet feasible to
measure other important characteristics, such as the
quality of two-phase fluids indicating; the ratio of va-
por to liquid presentin a fluid (1.0 for 100% liquid
and 0% vapor;0.0 for 0% liquid and 100% vapor). For
the EATCS, we focused on the measurable parameters
of Table 2. Depending onthe modeling assumptions
used, the total number of parameters (i.c.,|ul+|z|4|y])
varies between 45 and 88 which makes this inverse
problem undeniably sceverely under-constrained.

The diagnosis problern consists in identifying the val-
ucs Of the s exogenous parameters which lead to a
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Table 2: A set of measurable parameters of the EATCS

match between the simulated and observed values of
the above 10 parameters. All the other internal state
parameters (29 to 72 depending on the assumptions
chosen) must be estimated as well. There are vari-
ous ways to constrain this problem better for example,
using ranges of physically plausible values for each es-
timated parameter and qualitative information about
likely directions of change (e.g., [Kapadia ct al., 1994]).
Eventually, these sources of information will narrow
the problem down to intervals of plausible values in
which a diagnosis must be found.

To evaluate the feasibility of doing quantitative diag-
nosis, we took a model of the EATCS and constructed
two diagnosis engines. The first engine, the single-state
diagnoser, attempts to identify the exogenous param-
cters that Lest explain a set of observations. The sec-

ond engine, the regularized diagnoscr, exploits the near
steady-state properties of a tempora seguence of ob-
servations to better constrain the problem.

Single state d x Given au observation vector y, find
the internal parameters v which best explain the ob-
servat ion (Fig. 5).

Regularized dx Given N observations, use regular-
ization in parameter space to find a sequence of N
internal parameters which best explain the observa
tions (Fig. 6).

The structures of the sillglc-state and regularized di-
agnosis experiments are very similar (Figs. 5, 6). We
generated telemetry data by first siinulating states of
the EAT'CS. This consists in describing a set of hypo-
thetical physical circumstances in terms of values for
the exogenous parameters (top left cor ncr) and solv-
ing the EATCS model equations with respect to the
exogenous parameters with a quantitati ve simulation
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model.2 At this stage, the values of the model param-
eters correspond to the steady-state configuration the
EATCS. We then selected a subset of the parameters
to represent a set of plausible sensor measurcments wc
could obtain from the actual EATCS hardware sys-
tem. To these simulated vaues, wc added either white
or gaussian noise to account for various sources of noisc
such as sensor instruments, the physical process itself,
and the approximative nature of the EATCS model
used (top right corner).

The task of the diagnoser is to reconstruct the state
of the physical system which) when simulated, is the
closest approximation of the true physical state of the
EATCS (bottom). This works as follows: First, an es-
timate of the exogenous is parameters generated (bot-
tom right corner). Solving the model equations with
respect to the exogenous parameter estimates then re-
sults in a set of predicted state parameter values. Com-
paring the actual telemetry observations with the pre-
dictions produces a set of residuals (center). The heart
of the diagnosis then consists in adjusting the exoge-
nous parameter value estimates until the residua pre-
diction error is minimized (bottom left). Finaly, the
solution of the nonlinear least-squares problem defines
a diagnosis whose accuracy is measured with respect
to the original exogenous conditions (middle left).

2Due to the_inabilityof conventional simulation meth-
ods to properly converge on physically plausible states, we
were limited in the choice of simulation models to those
constructed by D AG GER.

The structure of the regularized diagnoser is simi-
lar to the single-state except that the nonlinear least-
squares minimization operates on the residual predic-
tion error and a set of k-th order difference relations
also known as regularized constraints.

The accuracy and performance of the simulation
model ar c critical to the success of this approach. For
this purpose, we used a graph-theoretic approach to
analyzing steady-stat,e, lumped-pararnctcr models of
algebraic equations in order to construct a special-
ized simulator whose structure espouses the feedback
present in the model.

Results

In most cases, the single-state diagnoser performed
worse than the regularized diagnoser because there
are typically many possible ways to explain a single
observed state. Figure 7 shows a comparison of the
single-state and the regularized diagnosers (1)x). Both
diagnose]s had to estimate the values of the following
exogenous parameters, the pump speed (Fig. 7-a) (also
direct lyineasured through a sensor), the first venturi
diaineter (Fig. 7-b), and the heat load on the first evap-
orator (¥ig. 7-c). Both diagnosers were given hydro-
thermal mcasurements for the first leg, namely, the
evaporator outlet temperature (Fig. 7-cl), the evapora-
tor inlet pressure (Fig. 7-¢) and the venturi flow rate
(Fig. 7-f).

Although the egularized diagnoser clearly outp er-
formed the single- stat ¢ diagunoser, we were not able to
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extend these results to noisy measurements. While the
single-state diagnoser is definitely out of consideration
for noisy diagnosis, wc had originaly expected to usc
regularization to imposc global smoothness constraints
that a diagnosis must exhibit. Unfortunately, instead
of obtaining smootli diagnoses inthe sense that the
transitions fromonc state to the next arcsmall, the
regularized diagnoser overfitted the noise. The numer-
ical analysis work required to properly tune a regular-
ized diagnoser extended WCII beyond the scope of this
thesis; therefore, we leave these investigations for fu-
ture work.
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